1.Definisi Turunan
Misalkan y adalah fungsi dari x atau y = f(x). Turunan (atau diferensial) dari y terhadap x dinotasikan dengan :
2.Rumus- Rumus Turunan
Dengan menggunakan definisi turunan dapat diturunkan sejumlah rumus tentang turunan, yaitu:
* Jika dengan C dan n konstanta real, maka :
* Jika y = C dengan
* Jika y = f(x) + g(x) maka
* Jika y = f(x).g(x) maka
*
*
3. Turunan Kedua
Turunan kedua y = f(x) terhadap x dinotasikan dengan . Turunan kedua diperoleh dengan menurunkan turunan pertama.
Contoh :
4. Penggunaan Turunan
* Menentukan gradien garis singgung kurva
Misal garis g menyinggung kurva y = f (x) dititik (a,f(a)) maka gradien g adalah :
Contoh :
Tentukan gradien garis singgung kurva
Jawab :
Gradien garis singgung kurva dititik (1,4) adalah
* Menentukan interval naik dan turun
Interval yang memenuhi dan dan ditentukan denggan menggambarkan garis bilangan dari f '(x) .
Contoh :
Tentukan interval fungsi naik dan turun dari
Jawab :
* Menentukan nilai maksimum dan minimum
Nilai maksimum dan minimum fungsi sering disebut nilai ekstrim atau nilai stasioner fungsi tersebut. Nilai ekstrim dari fungsi y = f(x) diperoleh pada f '(x) = 0
Contoh :
Jika maka nilai stasionernya adalah :
*Fungsi maksimum pada x=-2, maka nilai balik maksimumnya :
* Fungsi minimum pada x=4, maka nilai balik minimumnya :
3. TURUNAN FUNGSI TRIGONOMETRI
Rumus-rumus Turunan fungsi Trigonometri adalah:
Jawab:
2. ..........
Jawab:
permisi mau nanya nh emng ( 2-6x) kuadrat 3 emng hslnya -18(2-6X) kuadrat 2 ya
BalasHapusYa, betul sekali. Karena itu masuk ke rumus seperti ini:
Hapus[f(x)]^n=n.[f(x)]^n-1.f'(x)
cuma nanya ini mba turunan dari f(x) = sin^2x, jika nilai x yang memenuhi f '(x)= 1/2 adalah
BalasHapusf'(x) = 2.cos2x = 1/2
Hapuscos2x = 1/2 x 2
cos2x = 1
cos2x = cos0
2x = 0
x = 0
berhubung sekarang ada photomath, matematika jadi gampang!!!!
BalasHapusini brapa ya 3x5 + 4x3 – x – 3
BalasHapus